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Abstract. This chapter describes how we used regression rules to im-
prove upon results previously published in the Earth science literature.
In such a scienti�c application of machine learning, it is crucially impor-
tant for the learned models to be understandable and communicable. We
recount how we selected a learning algorithm to maximize communica-
bility, and then describe two visualization techniques that we developed
to aid in understanding the model by exploiting the spatial nature of the
data. We also report how evaluating the learned models across time let
us discover an error in the data.

1 Introduction and Motivation

Many recent applications of machine learning have focused on commercial data,
often driven by corporate desires to better predict consumer behavior. Yet sci-
enti�c applications of machine learning remain equally important, and they can
provide technological challenges not present in commercial domains. In particu-
lar, scientists must be able to communicate their results to others in the same
�eld, which leads them to agree on some common formalism for representing
knowledge in that �eld. This need places constraints on the representations and
learning algorithms that we can utilize in aiding scientists' understanding of
data.

Moreover, some scienti�c domains have characteristics that introduce both
challenges and opportunities for researchers in machine learning. For example,
data from the Earth sciences typically involve variation over both space and
time, in addition to more standard predictive variables. The spatial character of
these data suggests the use of visualization in both understanding the discovered



knowledge and identifying where it falls short. The observations' temporal nature
holds opportunities for detecting developmental trends, but it also raises the
specter of calibration errors, which can occur gradually or when new instruments
are introduced.

In this chapter, we explore these general issues by presenting the lessons we
learned while applying machine learning to a speci�c Earth science problem: the
prediction of Normalized Di�erence Vegetation Index (NDVI) from predictive
variables like precipitation and temperature. This chapter describes the results
of a collaboration among two computer scientists (Schwabacher and Langley)
and three Earth scientists (Potter, Klooster, and Torregrosa). It describes how
we combined the computer scientists' knowledge of machine learning with the
Earth scientists' domain knowledge to improve upon a result that Potter had
previously published in the Earth science literature.

We begin by reviewing the scienti�c problem, including the variables and
data, and proposing regression learning as a natural formulation. After this, we
discuss our selection of piecewise linear models to represent learned knowledge
as consistent with existing NDVI models, along with our selection of Quinlan's
Cubist (RuleQuest, 2002) to generate them. Next we compare the results we
obtained in this manner with models from the Earth science literature, showing
that Cubist produces signi�cantly more accurate models with little increase in
complexity.

Although this improved predictive accuracy is good news from an Earth sci-
ence perspective, we found that the �rst Cubist models we created were not
suÆciently understandable or communicable. In our e�orts to make the discov-
ered knowledge understandable to the Earth scientists on our team, we developed
two novel approaches to visualizing this knowledge spatially, which we report in
some detail. Moreover, evaluation across di�erent years revealed an error in the
data, which we have since corrected.

Having demonstrating the value of Cubist in Earth science by improving
upon a previously published result, we set out to use Cubist to �t models to
data to which models had not previously been �t. Doing so produced models
which we believe to be very signi�cant.

We discuss some broader issues that these experiences raise and propose some
general approaches for dealing with them in other spatial and temporal domains.
In closing, we also review related work on scienti�c data analysis in this setting
and propose directions for future research.

2 Monitoring and Analysis of Earth Ecosystem Data

The latest generation of Earth-observing satellites is producing unprecedented
amounts and types of data about the Earth's biosphere. Combined with readings
from ground sources, these data hold promise for testing existing scienti�c models
of the Earth's biosphere and for improving them. Such enhanced models would
let us make more accurate predictions about the e�ect of human activities on
our planet's surface and atmosphere.



One such satellite is the NOAA (National Oceanic and Atmospheric Admin-
istration) Advanced Very High Resolution Radiometer (AVHRR). This satellite
has two channels which measure di�erent parts of the electromagnetic spectrum.
The �rst channel is in a part of the spectrum where chlorophyll absorbs most of
the incoming radiation. The second channel is in a part of the spectrum where
spongy mesophyll leaf structure reects most of the light. The di�erence be-
tween the two channels is used to form the Normalized Di�erence Vegetation
Index (NDVI), which is correlated with various global vegetation parameters.
Earth scientists have found that NDVI is useful for various kinds of modeling,
including estimating net ecosystem carbon ux. A limitation of using NDVI in
such models is that they can only be used for the limited set of years during
which NDVI values are available from the AVHRR satellite. Climate-based pre-
diction of NDVI is therefore important for studies of past and future biosphere
states.

Potter and Brooks (1998) used multiple linear regression analysis to model
maximum annual NDVI5 as a function of four climate variables and their loga-
rithms6:

{ Annual Moisture Index (AMI): a unitless measure, ranging from -1 to +1,
with negative values for relatively dry, and positive values for relatively wet.
De�ned by Willmott & Feddema (1992).

{ Chilling Degree Days (CDD): the sum of the number of days times mean
monthly temperature, for months when the mean temperature is less than
0Æ C.

{ Growing Degree Days (GDD): the sum of the number of days times mean
monthly temperature, for months when the mean temperature is greater
than 0Æ C.

{ Total Annual Precipitation (PPT)

These climate indexes were calculated from various ground-based sources,
including the World Surface Station Climatology at the National Center for
Atmospheric Research. Potter and Brooks interpolated the data, as necessary,
to put all of the NDVI and climate data into one degree grids. That is, they
formed a 360 � 180 grid for each variable, where each grid cell represents one
degree of latitude and one degree of longitude, so that each grid covers the entire
Earth. They used data from 1984 to calibrate their model. Potter and Brooks
decided, based on their knowledge of Earth science, to �t NDVI to these climate
variables by using a piecewise linear model with two pieces. They split the data
into two sets of points: the warmer locations (those with GDD � 3000), and
the cooler locations (those with GDD < 3000). They then used multiple linear
regression to �t a di�erent linear model to each set, resulting in the piecewise
linear model shown in Table 1. They obtained correlation coeÆcients (r values)

5 They obtained similar results when modeling minimum annual NDVI. We chose to
use maximum annual NDVI as a starting point for our research, and all of the results
in this chapter refer to this variable.

6 They did not use the logarithm of AMI, since AMI can be negative



Table 1. The piecewise linear model from Potter & Brooks (1998).

Rule 1:

if

GDD<3000

then

ln(NDVI) = 0.715 ln(GDD) + 0.377 ln(PPT) - 0.448

Rule 2:

if

GDD>= 3000

then

NDVI = 189.89 AMI + 44.02 ln(PPT) + 227.99

of 0.87 on the �rst set and 0.85 on the second set, which formed the basis of a
publication in the Earth science literature (Potter & Brooks, 1998).

3 Problem Formulation and Learning Algorithm

Selection

When we began our collaboration, we decided that one of the �rst things we
would do would be to try to use machine learning to improve upon their NDVI
results. The research team had already formulated this problem as a regression
task, and in order to preserve communicability, we chose to keep this formula-
tion, rather than discretizing the data so that we could use a more conventional
machine learning algorithm. We therefore needed to select a regression learning

algorithm | that is, one in which the outputs are continuous values, rather than
discrete classes.

In selecting a learning algorithm, we were interested not only in improving
the correlation coeÆcient, but also in ensuring that the learned models would be
both understandable by the scientists and communicable to other scientists in the
�eld. Since Potter and Brooks' previously published results involved a piecewise
linear model that used an inequality constraint on a variable to separate the
pieces, we felt it would be bene�cial to select a learning algorithm that produces
models of the same form. Fortunately, Potter and Brooks' model falls within
the class of models used by Ross Quinlan's M5 and Cubist machine learning
systems. M5 (Quinlan, 1992) learns a decision tree, similar to a C4.5 decision
tree (Quinlan, 1993), but with a linear model at each leaf; the tree thus represents
a piecewise linear model. Cubist (RuleQuest, 2002) learns a set of rules, similar
to the rules learned by C4.5rules (Quinlan, 1993), but with a linear model on
the right-hand side of each rule; the set of rules thus also represents a piecewise
linear model. Cubist is a commercial product; we selected it over M5 because it is
a newer system than M5, which, according to Quinlan (personal communication,
2001), has much better performance than M5.



Table 2. The e�ect of Cubist's minimum rule cover parameter on the number of rules
in the model and the model's correlation coeÆcient.

minimum rule cover Number of rules r

1% 41 0.91

5% 12 0.90

10% 7 0.89

15% 4 0.88

20% 3 0.86

25% 2 0.85

100% 1 0.84

4 First Results

We ran Cubist (version 1.09) using the same data sets that Potter and Brooks
had used to build their model, but instead of making the cuts in the piecewise
linear model based on knowledge of Earth science, we let Cubist decide where to
make the cuts based on the data. The results exceeded our expectations. Cubist
produced a correlation coeÆcient of 0.91 (using ten-fold cross-validation), which
was a substantial improvement over the 0.86 correlation coeÆcient obtained in
Potter and Brooks' earlier work. The Earth scientists on our team were pleased
with the 0.91 correlation coeÆcient, but when presented with the 41 rules pro-
duced by Cubist, they had diÆculty interpreting them. Some of the rules clearly
did not make sense, and were probably a result of Cubist over�tting the data.
More importantly, the large number of rules | some 41 as compared with two
in the earlier work | was simply overwhelming.

The �rst step we took in response to this understandability problem was to
change the parameters to Cubist so that it would produce fewer rules. One of
these parameters speci�es the minimum percentage of the training data that
must be covered by each rule. The default value of 1% produced 41 rules. We
experimented with di�erent values of this parameter between 1% and 100%;
the results appear in Table 2 and Figure 1. Using a model with only one rule
| that is, using conventional multiple linear regression analysis | results in a
correlation coeÆcient of 0.84, whereas adding rules gradually improves accuracy.
Interestingly, when using two rules, Cubist split the data on a di�erent variable
than the one the Earth scientists selected. Potter and Brooks split the data on
GDD (essentially temperature), while Cubist instead chose precipitation, which
produced a very similar correlation coeÆcient (0.85 versus 0.86). The two-rule
model produced by Cubist is shown in Table 3. A comparison between Table 1
and Table 3 reveals that Potter and Brooks modeled ln(NDVI) in one rule, and
NDVI in the other rule, while Cubist modeled NDVI in both rules. Cubist does
not have the ability to model the logarithm of the class variable in some rules
while modeling the original class variable in other rules (there can only be one
class variable), so the space of rules searched by Cubist did not include Potter
and Brooks' model. Interestingly, Cubist produced similar accuracy even though
it searched a more limited rule space.
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Fig. 1. The number of rules in the Cubist model and the correlation coeÆcient for
several di�erent values of the minimum rule cover parameter.

Table 3. The two rules produced by Cubist when the minimum rule cover parameter
is set to 25%.

Rule 1:

if

PPT <= 25.457

then

NDVI = -3.22 + 7.07 PPT + 0.0521 CDD - 84 AMI + 0.4 ln(PPT) + 0.0001 GDD

Rule 2:

if

PPT > 25.457

then

NDVI = 386.327 + 316 AMI + 0.0294 GDD - 0.99 PPT + 0.2 ln(PPT)



Fig. 2. Map showing which of the two Cubist rules are active across the globe.

In machine learning there is frequently a tradeo� between accuracy and un-
derstandability. In this case, we are able to move along the tradeo� curve by ad-
justing Cubists' minimum rule cover parameter. Figure 1 illustrates this tradeo�
by plotting the number of rules and the correlation coeÆcient produced by Cu-
bist for each value of the minimum rule cover parameter in Table 2. We believe
that generally a model with fewer rules is easier to understand, so the �gure
essentially plots accuracy against understandability. We used trial and error to
select values for the minimum rule cover parameter that produced the number
of rules we wanted for understandability reasons. Based on this experience, We
concluded that a useful feature for future machine learning algorithms would be
the ability to directly specify the maximum number of rules in the model as a
parameter to the learning algorithm. After reviewing a draft of a conference pa-
per on our NDVI work (Schwabacher and Langley, 2001), Ross Quinlan decided
to implement this feature in the next version of Cubist - see Section 7.2.

5 Visualization of Spatial Models

Reducing the number of rules in the model by modifying Cubists' parameters
made the model more understandable, but to further understand the rules, we
decided to plot which ones were active where. We developed special-purpose
C code which produced the map in Figure 2. In this �gure, the white areas
represent portions of the globe that were excluded from the model because they
are covered with water or ice, or because there was insuÆcient ground-based
data available. After excluding these areas, we were left with 13,498 points that
were covered by the model. The light gray areas are the areas in which Rule 1



Fig. 3. Map showing which of the seven Cubist rules are active across the globe.

from Table 3 applies (the drier areas), and the dark gray areas are the areas in
which Rule 2 from Table 3 applies (the wetter areas).

Figure 3 shows where the various rules in a seven-rule model are active. In
this �gure, the white regions were excluded from the model, as before. The gray
areas represent regions in which only one rule applies; the seven shades of gray
correspond to the seven rules. (We normally use di�erent colors for the di�erent
rules, but resorted to di�erent shades of gray for this book.) The black areas
are regions in which more than one rule in the model applied. (In these cases,
Cubist uses the average of all applicable rules.) The seven rules corresponding
to this map are shown in the Table 4.

The Earth scientists on our team found these maps very interesting, because
one can see many of the Earth's major topographical and climatic features. The
maps provide valuable clues as to the scienti�c signi�cance of each rule. With
the aid of this visualization, the scientists were better able to understand the
seven-rule model. Before seeing the map, the scientists had diÆculty interpret-
ing Rule 7, since its conditions speci�ed that CDD and GDD were both high,
which appears to specify that the region is both warm and cold. After seeing
the map showing where Rule 7 is active, they determined that Rule 7 applies in
the northern boreal forests, which are cold in the winter and fairly warm in the
summer. The seven-rule model, which is made understandable by this visualiza-
tion, is almost as accurate as the incomprehensible 41-rule model (see Table 2).
This type of visualization could be used whenever the learning task involves
spatial data and the learned model is easily broken up into discrete pieces that
are applicable in di�erent places, such as rules in Cubist or leaves in a decision
tree.



Table 4. The seven rules for NDVI produced by Cubist when the minimum rule cover
parameter is set to 10%.

Rule 1:

if

CDD <= 16.52

PPT <= 25.457

then

NDVI = 3.48 + 7.17 PPT - 161 AMI - 0.0082 GDD - 9.9 ln(PPT) + 0.0003 CDD

Rule 2:

if

CDD > 16.52

PPT <= 25.457

then

NDVI = -69.99 + 16.08 PPT - 0.0449 GDD - 263 AMI + 0.0352 CDD + 0.4 ln(PPT)

Rule 3:

if

AMI <= -0.09032081

PPT > 25.457

then

NDVI = 375.9 + 367 AMI + 0.0257 GDD - 0.01 PPT + 0.2 ln(PPT)

Rule 4:

if

GDD <= 1395.62

PPT > 25.457

then

NDVI = 267.3 + 0.12 GDD + 0.0036 CDD + 3 AMI - 0.01 PPT + 0.2 ln(PPT)

Rule 5:

if

AMI > -0.09032081

GDD > 5919.36

then

NDVI = 601.1 - 0.0063 GDD - 0.11 PPT + 3 AMI + 0.2 ln(PPT) + 0.0001 CDD

Rule 6:

if

AMI > -0.09032081

CDD <= 908.73

GDD > 1395.62

GDD <= 5919.36

then

NDVI = 359.8 + 317 AMI + 0.037 GDD + 0.0425 CDD - 1 PPT + 0.2 ln(PPT)

Rule 7:

if

AMI > -0.09032081

CDD > 908.73

GDD > 1395.62

then

NDVI = 373.13 + 0.0645 GDD + 249 AMI - 1.32 PPT + 0.0134 CDD + 0.2 ln(PPT)



Fig. 4. Map showing the errors of the Cubist prediction of NDVI across the globe.

A second visualization tool that we developed (also as special-purpose C
code) shows the error of the Cubist predictions across the globe. In Figure 4,
white represents either zero error or insuÆcient data, black represents the largest
error, and shades of gray represent intermediate error levels. From this map, it
is possible to see that the Cubist model has large errors in Alaska and Siberia,
which is consistent with the belief of the Earth scientists on our team that the
quality of the data in the polar regions is poor. Such a map can be used to better
understand the types of places in which the model works well and those in which
it works poorly. This understanding in turn may suggest ways to improve the
model, such as including additional attributes in the training data or using a
di�erent learning algorithm. Such a visualization can be used for any learning
task that uses spatial data and regression learning.

6 Discovery of Quantitative Errors in the Data

Having successfully trained Cubist using data for one year, we set out to see how
well an NDVI model trained on one year's data would predict NDVI for another
year. We thought this exercise would serve two purposes. If we generally found
transfers across years, that would be good news for Earth scientists, because it
would let them use the model to obtain reasonably accurate NDVI values for
years in which satellite-based measurements of NDVI are not available. On the
other hand, if the model learned from one year's data transferred well to some
years but not others, that would indicate some change in the world's ecosystem
across those years. Such a �nding could lead to clues about temporal phenomena
in Earth science such as El Ni~nos or global warming.



Table 5. Correlation coeÆcients obtained when cross-validating using one year's data
and when training on one year's data and testing on the next year's data, using the
original data set and using the corrected data set.

Data Set r, original r, corrected

cross-validate 1983 0.97 0.91

cross-validate 1984 0.97 0.91

cross-validate 1985 0.92 0.92

cross-validate 1986 0.92 0.92

cross-validate 1987 0.91 0.91

cross-validate 1988 0.91 0.91

train 1983, test 1984 0.97 0.91

train 1984, test 1985 0.80 0.91

train 1985, test 1986 0.91 0.91

train 1986, test 1987 0.91 0.91

train 1987, test 1988 0.90 0.90

What we found, to our surprise, is that the model trained on 1983 data
worked very well when tested on the 1984 data, and that the model trained on
1985 data worked very well on data from 1986, 1987, and 1988, but that the
model trained on 1984 data performed poorly when tested on 1985 data. The
second column of Table 5 shows the tenfold cross-validated correlation coeÆ-
cients for each year, as well as the correlation coeÆcients obtained when testing
each year's model on the next year's data. Clearly, something changed between
1984 and 1985. At �rst we thought this change might have been caused by the
El Ni~no that occurred during that period.

Further light was cast on the nature of the change by examining the scatter
plots that Cubist produces. In Figure 5, the graph on the left plots predicted
NDVI against actual NDVI for the 1985 cross-validation run. The points are
clustered around the x = y line, indicating a good �t. The graph on the right
plots predicted against actual NDVI when using 1985 data to test the model
learned from 1984 data. In this graph, the points are again clearly clustered
around a line, but one that has been shifted away from the x = y equation. This
shift is so sudden and dramatic that the Earth scientists on our team believed
that it could not have been caused by a natural phenomenon, but rather that it
must be due to problems with the data.

Further investigation revealed that there was in fact an error in the data.
In the data set given to to us, a recalibration that should have been applied
to the 1983 and 1984 data had not been done. We obtained a corrected data
set and repeated each of the Cubist runs from Table 5, obtaining the results in
the third column.7 With the corrected data set, the model from any one year
transfers very well to the other years, so these models should be useful to Earth

7 All of the results presented in the previous sections are based on the corrected data
set.



Fig. 5. Predicted NDVI against actual NDVI for (left) cross-validated 1985 data and
(right) training on 1984 data and testing on 1985 data.

scientists in order to provide NDVI values for years in which no satellite-based
measurements of NDVI are available.

Our experience in �nding this error in the data suggests a general method
of searching for calibration errors in time-series data, even when no model of
the data is available. This method involves learning a model from the data for
each time step and then testing this model on data from successive time steps.
If there exist situations in which the model �ts the data unusually poorly, then
those are good places to look for calibration errors in the data. Of course, when
such situations are found, the human experts must examine the relevant data
to determine, based on their domain knowledge, whether the sudden change in
the model results from an error in the data, from a known discontinuity in the
natural system being modeled, or from a genuinely new scienti�c discovery. This
idea can be extended beyond time-series problems to any data set that can be
naturally divided into distinct sets, including spatial data.

7 New Data Sets

7.1 Using other variables to predict NDVI

Having demonstrated the value of Cubist to Earth science by improving upon
a previously published result, we set out to use Cubist to �t models to data
to which models had not previously been �t. First, we tried using additional
variables to predict NDVI, beyond the four variables that were used in Potter
and Brooks (1998). The additional variables we tried were:



{ Potential Evapotranspiration (PET): potential loss of water from the soil
both by evaporation and by transpiration from the plants growing thereon.
De�ned by Thornthwaite (1948).

{ Elevation (DEM)
{ Percentage wetland (WETLND)
{ HET2SOLU: a 2-dimensional measure of heterogeneity that counts the num-
ber of di�erent combinations of soil and landuse polygons within each grid
cell.

{ HET3SOLU: a 3-dimensional measure of heterogeneity that takes elevation
into account.

{ Vegetation type according to the University of Maryland (UMDVEG)
{ Vegetation type according to the CASA model (CASAVEG)

We found that the variable that produced the largest improvement in ac-
curacy when used together with the original four variables was UMDVEG. In-
cluding UMDVEG together with the original four variables increased the cross-
validated correlation coeÆcient (with a minimum rule cover of 1%) from 0.91 to
0.94. Further investigation of this variable, however, revealed that it was derived
from NDVI, so that using it to predict NDVI would not be useful.

We found that including PET, DEM, WETLND, and HET2SOLU (along
with the original four variables) increased the cross-validated correlation coef-
�cient (using a minimum rule cover of 1%) from 0.91 to 0.93. This model has
40 rules, and is very diÆcult to understand. Increasing the minimum rule cover
parameter to 10% produced a model with seven rules and a cross-validated cor-
relation coeÆcient 0.90. This model is slightly more accurate than the model
produced from the original four variables (which had a cross-validated correla-
tion coeÆcient of 0.89) and is somewhat harder to understand.

We concluded that the four variables chosen by Potter and Brooks (1998)
appear to be a good choice of variables for building a model that is both accurate
and understandable. In applications for which accuracy is more important than
understandability, it may be better to use the model with eight variables and 40
rules.

7.2 Predicting NPP

We decided to try using Cubist to predict another measure of vegetation: Net
photosynthetic accumulation of carbon by plants, also known as net primary
production (NPP). While NDVI is used as an indicator of the type of vegetation
at di�erent places, NPP is a measure of the rate of vegetation growth. It is
usually reported in grams of carbon per square meter per year.

NPP provides the energy that drives most biotic processes on Earth. The
controls over NPP are an issue of central relevance to human society, mainly
because of concerns about the extent to which NPP in managed ecosystems can
provide adequate food and �ber for an exponentially growing population. In
addition, accounting of the long-term storage potential in ecosystems of atmo-
spheric carbon dioxide (CO2) from industrial pollution sources begins with an
understanding of major climate controls on NPP.



NPP is measured in two ways. The �rst method, known as \destructive
sampling," involves harvesting and weighing all of the vegetation in a de�ned
area, and estimating the age of the vegetation using techniques such as counting
the number of rings in the cross-sections of trees. The second method uses towers
that sample the atmosphere above the vegetation, and estimating NPP from the
net CO2 uptake. Both methods are expensive and provide values for only one
point at at time, so until recently NPP values were only available for a small
number of points on the globe.

Previous ecological research has shown that surface temperature and precip-
itation are the strongest controllers of yearly terrestrial NPP at the global scale
(Lieth 1975; Potter et al., 1999). Lieth (1975) used single linear regression to pre-
dict NPP from either temperature or precipitation, using a data set containing
NPP values from only a handful of sites.

We recently obtained a new, much larger NPP data set from the Ecosystem
Model-Data Intercomparison (EMDI) project, sponsored by the National Center
for Ecological Analysis and Synthesis (NCEAS) in the U.S. and the International
Geosphere Biosphere Program (IGBP). This data set contains NPP values from
3,855 points across the globe. We decided to try using Cubist to predict NPP
from the following three variables:

{ annual total precipitation in millimeters, 1961-1990 (PPT)
{ average mean air temperature in degrees centigrade, 1961-1990 (AVGT)
{ biome type, a discreet variable with 12 possible values (BIOME)

After Ross Quinlan reviewed a draft of a conference paper on our NDVI work
(Schwabacher and Langley, 2001), he implemented a new feature in Cubist that
allows the user to directly specify the maximum number of rules, rather than
having to use trial and error to pick a value of the minimum rule cover parameter
that will produce the desired number of rules. For the NPP prediction, we used a
new version of Cubist (version 1.10) that includes this new feature. We speci�ed
a maximum of �ve rules. Cubist produced the four rules shown in Table 6, and
a cross-validated correlation coeÆcient of 0.98.

The Earth scientists on our team were very happy with the 0.98 correlation
coeÆcient, and felt that the rules generally made sense. They liked the idea
of having di�erent linear models for di�erent groups of biome types. Initially,
however, they were surprised that the coeÆcient on AVGT was negative in three
of the four rules. After giving it more thought, they came up with a plausible
explanation of why this coeÆcient is negative. AVGT is acting mainly as a
predictor of relatively higher (or lower) heat uxes that tend to severely dry out
(or leave moist) the soils and plants, given a similar PPT. This explanation still
requires further investigation.

To help understand these four rules, we produced a map showing where the
rules are active. Initially we produced a map with four colors representing the
four rules, and black representing multiple rules being active or no rules being
active (as in Figure 3). The result was a map in which almost all of the land
area was black, which of course was not useful. It turns out that with this set



Table 6. The four rules produced by Cubist for predicting NPP.

Rule 1:

if

PPT <= 653

then

NPP = 63.8 + 0.49 PPT - 6.5 AVGT

Rule 2:

if

BIOME in {Grassland, Wooded-grassland, Shrubland, ENL-forest-boreal}

then

NPP = 94.3 + 0.418 PPT - 7.3 AVGT

Rule 3:

if

BIOME in {Forest-temperate, Forest-boreal, Forest-xeric}

then

NPP = 215.1 + 0.377 PPT - 2.4 AVGT

Rule 4:

if

BIOME in {Savanna, EBL-forest-tropical, Forest-tropical,

DBL-forest-tropical}

then

NPP = 115.4 + 29.1 AVGT + 0.056 PPT

Fig. 6. Map showing which combinations of the four Cubist rules for NPP are active
across the globe.



of rules, for much of the land area, two rules are active. Since there are only
four rules, and the last three are mutually exclusive, we were able to assign a
di�erent color to each of the eight possible combinations of rules. Also, the 3,855
points in our NPP data are from 12 biome types, while approximately 48% of
the world's land area has biome types other than these 12, resulting in no rule
being active. Most of these points are tundra, desert, or cultivated land, which
are biome types for which NPP has not been measured. We assigned a ninth
color to represent these areas. In addition, the global data set and the NPP
data set use two di�erent sets of discrete values for biome type. Some of the
biome types in the global data set map into more than one biome type in the
NPP data set, and in some cases these multiple biome types appear in multiple
Cubist rules, making it unclear which Cubist rules are active. These ambiguous
points account for approximately 17% of the world's land area; we assigned a
tenth color to these points. The resulting map (translated into shades of gray for
this book) is shown in Figure 6. The black areas in this map are the ambiguous
points.

The Earth scientists on our team felt that this map was useful in understand-
ing the rules, and in understanding the coverage of the model. It showed them
that the current EMDI data set of measured NPP values allows for a somewhat
limited extrapolation of the Cubist model (with no deserts, tundra, or cultivated
areas), but that the extrapolation still covers a substantial portion of the global
land surface, and that it covers most of the naturally \green" areas.

8 Related Work

Robust algorithms for exible regression have been available for some time.
Breiman, Friedman, Olshen, and Stone's (1984) CART �rst introduced the no-
tion of inducing regression trees to predict numeric attributes. CART trees have
a numeric constant at each leaf, yielding a piecewise constant model. Weiss and
Indurkhya (1993) extended the idea to rule induction, inducing a set of rules
where the right-hand side of each rule has a numeric constant. Quinlan ex-
tended the idea to piecewise linear models, by putting a linear model at each
leaf of a decision tree in M5 (Quinlan, 1992) or on the right-hand side of each of
a set of rules in Cubist (RuleQuest, 2002). Each approach has proved successful
in many domains, and both CART and Cubist have achieved commercial suc-
cess. However, neither approach has yet seen much application to Earth science
data, despite the considerable work on classi�cation learning for tasks like as-
signing ground cover types to pixels (e.g., Brodley & Friedl, 1999) and clustering
adjacent pixels into groups (e.g., Ester, Kriegel, Sander, & Xu, 1996).

The work on communicability and understandability described in this chapter
builds on previous work in comprehensibility. Our requirement for communica-
bility is similar to Michalski's (1983) \comprehensibility postulate" which states
that the results of computer induction should be in a form that is syntactically
and semantically similar to that used by humans experts. A collection of papers
on comprehensibility can be found in Kodrato� and N�edellec (1995).



Researchers have also carried out extensive work on techniques for visual-
izing data and learned knowledge. Tufte (1983) did early inuential work on
the former topic, whereas Keim and Kriegel (1996) review many of the exist-
ing approaches. Rheingans and desJardins (2000) describe a technique for using
self-organizing maps to display high-dimensional data, predictions, and errors in
two dimensions. Within the data-mining community, researchers have developed
a variety of methods for the graphical display of learned knowledge (e.g., Brunk,
Kelly, & Kohavi, 1996). However, although much of this work employs a spatial
metaphor, little has focused on learned spatial knowledge itself.

Applications of machine learning to Earth science data, as in methods for
ground cover prediction (e.g., Brodley & Friedl, 1999), regularly display classes
on maps. Smyth, Ghil, and Ide (1999) plot predictions of a learned mixture
model on the globe, but our approach to visualizing areas in which regression
rules match, as well as anomalous regions, appears novel.

The European project SPIN! (2002) is seeking to develop a spatial data
mining system by combining data mining tools like C4.5 (Quinlan, 1993) with
tools for visualizing spatial data like Descartes (Andrienko & Andrienko, 1999).
The planned system will let its users visualize geographically-referenced data
on maps, and mine the data using the data-mining tools, from a uni�ed user
interface. The researchers plan to test the SPIN! system on applications involving
seismic and volcano data. The visualization component of the project seems
focused on letting users visualize the data, rather than visualizing the knowledge
learned through data mining.

There has also been considerable research on using machine-learned knowl-
edge to detect and either ignore or correct errors in training data. Much of this
work has focused on removing cases with faulty class labels (e.g., John, 1995;
Brodley & Friedl, 1999), but some has addressed detecting errors in the values of
predictive variables. GritBot, a product of Quinlan's RuleQuest Research (2002),
detects both errors in the class labels and errors in the predictive values by �nd-
ing what it calls anomalies: items in the training data that are outliers. We ran
GritBot on both the NDVI and the NPP data sets, and it found a number of
anomalies. For example, it found a point that had the unusual combination of
a high maximum NDVI and a low minimum NDVI. All of the anomalies that
GritBot �nds are single-point anomalies | each anomaly is one item in the
training data, which in the applications described in this chapter means that
it is a single point on the globe at a single point in time | so GritBot is not
capable of �nding the type of systematic error that we describe in Section 6.
Naturally, there are established methods for detecting and correcting calibra-
tion problems in remote-sensing systems (e.g., Chen, 1997), but these rely on
prede�ned models. Thus, our use of regression rules to detect systematic errors
appears novel to both the machine learning and calibration communities.



9 Future Work

Our collaboration is in its early stages, and we still have many research avenues
to explore. Our next step in modeling NDVI will incorporate time explicitly by
adding the year to the continuous variables used in regression equations, rather
than building a separate model for each year. We hope that by examining the
resulting multi-year models, we can learn something about climate change over
time.

In this chapter, we have assumed that models with fewer rules are more
understandable. In future work, we plan to test this assumption by having the
Earth scientists on our team examine various sets of rules that Cubist produces
for di�erent parameter values and telling us which sets they think are easier to
understand. Naturally, we will also ask them to judge the rules' plausibility and
interestingness from the perspective of Earth science.

Another direction for future work is to develop an extension to the Cubist
algorithm that would allow it to take advantage of background knowledge. One
possible form of background knowledge would be knowledge of the sign of the
coeÆcients on some of the variables within the linear models. For example, we
believe that the coeÆcient on PPT in the NPP model should always be positive.
Pazzani and Bay (1999) describe an algorithm that uses knowledge of the signs
of the coeÆcients to constrain the construction of regression equations. Their
algorithm accepts input about the sign of each term, then use an optimization
method to �nd the best weights given the constraints. The resulting equations
were just as accurate as the unconstrained linear models on separate test sets,
and domain experts found them more comprehensible. It would be interesting
to combine Pazzani and Bay's algorithm with the Cubist algorithm to produce
decision rules with linear models that obey sign constraints.

The NDVI predictive model is only one piece of a larger framework, known as
CASA (Potter & Klooster, 1998), that Potter's team has developed to model the
Earth's ecosystem. CASA takes the form of a process model, stated in terms of
di�erential equations, for the production and absorption of biogenic trace gases
in the Earth's atmosphere. CASA's output is NPP. We have achieved very good
accuracy by using Cubist to predict NPP, but for the reasons of understandability
and communicability described earlier, we would like our learned models to take
the same form as the CASA model, which means we cannot rely on Cubist alone
in our future e�orts.

There has been some research on discovering laws that take the form of
di�erential equations (Todorovski & Dzeroski, 1997), but this work has not used
an existing set of equations as the starting point. We plan to develop an algorithm
that will begin with the current CASA model and search through the space of
possible equations to �nd an improved model. We will consider developing a
Cubist-like algorithm that learns a model with a set of rules to select among
di�erent sets of di�erential equations (instead of di�erent linear models). We
hope that this e�ort will improve the accuracy of the CASA model to the point
where it is as accurate as the Cubist model of NPP, while retaining CASA's



communicability and its scienti�c plausibility. We also hope that the changes
our system makes to the model will suggest new insights about Earth science.

10 Lessons Learned

In their editorial on applied research in machine learning, Provost and Kohavi
(1998) claimed that a good application paper will \focus research on important
unsolved problems that currently restrict the practical applicability of machine
learning methods." In this chapter, we have identi�ed, and provided initial so-
lutions for, three such problems that arise in scienti�c applications:

Communicability. In scienti�c domains, it is important for the form of the
learned models to match the form that is customarily used in the relevant
literature, so that the learned models can be communicated to other scien-
tists.

Understandability. In domains that involve spatial data, understanding of the
models can be increased by visualizing the spatial distribution of the model's
errors and visualizing the locations in which the model's components (e.g.,
rules) are active. Adjusting the parameters to the learning algorithm in order
to produce a smaller model can also aid understandability.

Quantitative errors. In applications that involve time-series numerical data,
machine learning methods can be used to identify quantitative errors by
testing a learned model for one time period against data from other time
periods.

Although we have developed these ideas in the context of a speci�c scien-
ti�c application { the prediction of NDVI and NPP from climate variables { we
believe they have general applicability to any domain that involves scienti�c un-
derstanding of spatio-temporal data. As we continue utilizing machine learning
to improve the CASA model, we expect that the challenging nature of the task
will reveal other methods and principles that contribute to both Earth science
and the science of machine learning.

Acknowledgments

We would like to thank Vanessa Brooks for her help in creating the data �les.
We would also like to thank Je� Shrager for his help in formulating the problem,
and for numerous discussions in which he has participated. Finally, we would
like to thank Kazumi Saito and Ross Quinlan for reviewing drafts of this paper.
This research was funded by the NASA Intelligent Systems Program.

References

Andrienko, G. L., & Andrienko, N. V. (1999). Interactive maps for visual data
exploration. International Journal Geographic Information Science, 13, 355{
374.



Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classi�cation
and regression trees . Belmont, CA: Wadsworth.

Brodley, C. E., & Friedl, M. A. (1999). Identifying mislabeled training data.
Journal of Arti�cial Intelligence Research, 11 , 131{167.

Brunk, C., Kelly, J., & Kohavi, R. (1996). MineSet: An integrated system for
data mining. Proceedings of the Second International Conference of Knowledge
Discovery and Data Mining (pp. 135{138). Portland: AAAI Press.

Chen, H. S. (1997). Remote sensing calibration systems: An introduction. Hamp-
ton, VA: A. Deepak Publishing.

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm
for discovering clusters in large spatial databases with noise. Proceedings of

the Second International Conference of Knowledge Discovery and Data Mining

(pp. 226{231). Portland: AAAI Press.

John, G. A. (1995). Robust decision trees: Removing outliers from data. Proceed-
ings of the First International Conference of Knowledge Discovery and Data

Mining (pp. 174{179). Montreal: AAAI Press.

Keim, D. A., & Kriegel, H.-P. (1996). Visualization techniques for mining large
databases: A comparison. Transactions on Knowledge and Data Engineering ,
8 , 923{938.

Kodrato�, Y. & N�edellec, C. (Eds.) (1995). Working Notes of the IJCAI-95

Workshop on Machine Learning and Comprehensibility . Montreal, Canada.

Lieth, H. (1975). Modeling the primary productivity of the world. Pages 237-263
in H. Lieth and R. H. Whittaker, eds., Primary Productivity of the Biosphere.
Springer-Verlag, Berlin.

Michalski, R. S. (1983). A theory and methodology of inductive learning. Arti-
�cial Intelligence, 20 , 111{161.

Pazzani, M. J., & Bay, S. D. (1999). The independent sign bias: gaining in-
sight from multiple linear regression. Proceeding of the Twenty-First Annual

Meeting of the Cognitive Science Society.

Potter, C. S., & Brooks, V. (1998). Global analysis of empirical relations between
annual climate and seasonality of NDVI. International Journal of Remote
Sensing , 19 , 2921{2948.

Potter, C. S., & Klooster, S. A. (1998). Interannual variability in soil trace gas
(CO2, N2O, NO) uxes and analysis of controllers on regional to global scales.
Global Biochemical Cycles , 12, 621{635.

Potter, C. S., Klooster, S. A., & Brooks, V. (1999). Interannual variability in ter-
restrial net primary production: Exploration of trends and controls on regional
to global scales. Ecosystems, 2(1): 36-48.

Provost, F., & Kohavi, R. (1998). On applied research in machine learning.
Machine Learning, 30 , 127{132.

Quinlan, J. R. (1992). Learning with continuous classes. Proceedings of the Aus-
tralian Joint Conference on Arti�cial Intelligence (pp. 343-348). Singapore:
World Scienti�c.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning . San Mateo, CA:
Morgan Kaufmann.



Rheingans, P., & desJardins, M. (2000). Visualizing high-dimensional predictive
model quality. Proceedings of the 11th IEEE Visualization Conference. Los
Alamitos, CA: IEEE Computer Society.

RuleQuest (2002). RuleQuest Research data mining tools.
http://www.rulequest.com.

Schwabacher, M., & Langley, P. (2001). Discovering communicable scienti�c
knowledge from spatio-temporal data. Proceedings of the Eighteenth Interna-

tional Conference on Machine Learning (pp. 489{496). San Francisco: Morgan
Kaufmann.

Smyth, P., Ghil, M., & Ide, K. (1999). Multiple regimes in Northern hemisphere
height �elds via mixture model clustering. Journal of the Atmospheric Sci-

ences , 56 .
SPIN! (2002). Spatial mining for data of public interest.
http://www.ccg.leeds.ac.uk/spin.

Thornthwaite, C. W. (1948). An approach toward rational classi�cation of cli-
mate. Geographical Review , 38 , 55{94.

Todorovski, L., & Dzeroski, S. (1997). Declarative bias in equation discovery.
Proceedings of the Fourteenth International Conference on Machine Learning

(pp. 376{384). San Francisco: Morgan Kaufmann.
Tufte, E. R. (1983). The visual display of quantitative information. Cheshire,
CT: Graphics Press.

Weiss, S., & Indurkhya, N. (1993). Rule-based regression. Proceedings of the

Thirteenth International Joint Conference on Arti�cial Intelligence (pp. 1072{
1078). Chambery, France.

Willmott, C. J., & Feddema, J. J. (1992). A more rational climate moisture
index. Professional Geographer , 44 , 84{87.


